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1. Introduction 

In recent years, the relevance of autonomous vehicles has increased greatly. In combination 

with the increase in shared mobility services, autonomous vehicles could provide a shift 

towards more sustainable transport systems. However, typical transport-related fundamental 

challenges such as scalability, large and sudden demand peaks, regional seasonal variations, 

and high goals for traffic system efficiency have persisted. To efficiently realize autonomous 

demand-responsive mobility concepts, research is needed on innovative methods for the 

coordination of vehicle fleets, introducing new ideas. 

The recent advances in computer technology have created applications for machine learning 

research in many digital platforms, including intelligent and autonomous transportation 

systems. The classroom implementation of a relatively small-scale demand-responsive 

autonomous vehicle fleet constitutes a complex optimization problem that can be tackled with 

a learned agent. Applications at this level have the ability to impact society broadly. In traffic 

psychology, it has been repeatedly hypothesized that traffic automation would be beneficial. 

Advancements in this area have great potential in improving road traffic efficiency, safety, 

and comfort. In addition, the above coordination solutions are generic, with no application-

specific requirement for on-road evaluation. In this work, we specifically focus on ML-based 

techniques to solve the vehicle coordination problem. In a broader sense, we try to answer the 

generic challenges in autonomous vehicle fleet coordination at microscopic levels, involving 

the assumptions of autonomy and closed vehicle fleets in urban areas. 

The high accuracy of fleet routing, combined with the flexibility in scheduling, must be 

compensated by the real-time coordination of the fleet itself. The necessity of effective fleet 

coordination is vital to the optimal usage of the available infrastructure. To have a more 

holistic point of view, the on-demand public transit ecosystem includes requests from humans 

or virtualized sensors and should be able to serve multiple non-coordinated vehicle categories 

such as bicycles, scooters, or e-cabs, in addition to AVs. Further permitting single-passenger 
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and group-based rides will enrich real-world scenarios from feasibility and effectiveness 

perspectives. In the absence of road transport infrastructure availability for the continuous 

flow of all the fleet, management is required. Overall, one of the contributions of this work is 

to provide realistic operations on-road without any method to precisely analyze the data since 

there is no human-driven vehicle coordination. 

1.1. Background and Motivation 

The promise of autonomous vehicles has enticed technologists and innovators for over half a 

century. With recent advances in fields such as robotics, machine learning, artificial 

intelligence, computer graphics, and automotive engineering, autonomous vehicles are 

beginning to transcend speculation and leave the experimental phase of development to enter 

the general public's national and international transportation systems. It is also at the forefront 

for many corporate interests. The public will have access to these vehicles via a ride-sharing 

app, and people will use it to take them to work, home, or recreational activities after a concert, 

game, or night at a bar. Action movies and popular press have investigated scenarios with 

varying climates from utopian hopes to dystopian fears regarding these vehicles and their 

use. 

The public is justifiably interested in the development of autonomous vehicles because of the 

promises these vehicles hold. First and foremost, autonomous vehicles promise increased 

safety when they reach full autonomy. Transportation experts predict reductions in accident 

rates ranging from 80% to 90% once all vehicles on the road are fully autonomous. In addition 

to increased safety, autonomous vehicles also offer the potential for improved fuel efficiency 

through the optimization of acceleration, steady-speed driving, and electronic following, 

leading to a potential improvement in following distance and traffic flow. While a number of 

perception, prediction, and planning problems associated with driving intelligent agents, 

particularly in the car-following and highway merge scenarios, have been developed recently, 

concurrent research concerning the coordination of multiple agents has primarily focused on 

independent decisions or common communications for merged and reinforced rewards. Very 

little research addressing the importance of communication for differences of opinion exists. 

This is the specific gap in the autonomous vehicle coordination research we investigate, and 

we integrate current machine learning techniques to address this currently open issue. 
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Understanding the importance of contentious communication will provide a foundational 

understanding in the future for the potential impact of differences of opinion in a variety of 

social, acrimonious, and political systems. 

1.2. Scope and Objectives 

This work focuses on deploying machine learning techniques and coordination patterns that 

are centralized but scalable to a large autonomous vehicle (AV) fleet, either operated by a 

single entity or as a mixed fleet. The aim is to advance from theoretical concepts of fleet 

coordination towards scenarios closer to real-world applications. Thus, the mentioned 

demographic focus allows for elaboration on the actual state of the art of fleet composition, 

geographic constraints, and regulations in operation and testing, additional equipment 

availability, and the expected behavior of vehicle agents. The main objective of this work is to 

develop and verify improvements in the performance of traffic light management, such as 

reduced traffic time or increased satisfaction of traffic participants. Optimization of 

operations, i.e., reduced fuel consumption, less harmful emissions, and efficient 

transportation services management, is also set. The project results should indeed contribute 

to enhancing safety, i.e., reductions in collision numbers and general operating conditions. In 

terms of contributions to the state of the art, we would like to bridge the gap between a 

sophisticated and non-scalable realistic transition of alternatives with primary or sole reliance 

on vehicle-to-infrastructure communication towards a dense centralized network of vehicle 

agents directed and constrained to provide a desired general behavior of traffic networks 

instead of micro-optimization of their own interests. This can speed up other research in the 

direction of adding a mechanism for adaptation to the presence of human drivers, 

infrastructure, and policies or grouping of AVs to perform specific missions. Unfortunately, 

the research is subject to constraints not only theoretical, such as technology development, 

security, and implementation of fleet coordination concepts, but also related to the policy and 

legal environment. Indeed, we assumed the operation of the whole fleet of vehicles under 

control in the tested environments. The methods described benefited from this assumption as 

they were primarily designed to optimize central control, but on the positive side, it also 

proved the potential for scalability when the whole fleet or its part switched to autonomous 

mode. We chose to focus on methods and techniques applicable to relatively large real-life 

operations of multiple AVs, taking into account regulation in city traffic and the assumption 
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of a daily maximum of motor vehicles throughout the project. The technologies used and 

tested are similar to those used in navigation systems or applications in which the vehicle 

indicates a desired destination and is routed to it. In addition, we have modeled and verified 

a path planning mechanism from the perspective of optimization and coordination between 

vehicles, not only at road intersections but through entire network lanes. From a theoretical 

perspective, to the best of our knowledge, the work done is a development of several well-

known solutions and theories in the context of vehicle path coordination towards a fleet of 

contrasting composition and constraints. The use of various abstraction levels, such as the 

basic concept of a desired control point for a network of vehicle constraints, provided the basis 

for composing effective vehicle management strategies allowing for both collision avoidance 

and respect for traffic rules and network operations. In our work, vehicle take-over and give-

back are explored. 

2. Fundamentals of Autonomous Vehicles 

Autonomous vehicles are self-driven vehicles that are capable of sensing and interpreting 

their environment to make real-time decisions about actions, such as steering, braking, and 

acceleration. These vehicles combine different types of sensors, such as cameras, radars, 

ultrasonic sensors, and lidars, to perceive the surrounding environment. Subsequently, the 

vehicles use various sophisticated algorithms to produce control signals that are used to 

maneuver in the environment. As a result, these vehicles have great potential in enhancing 

the safety, mobility, and eco-friendliness of transportation systems. The issues of vehicle-fleet 

coordination, for instance, are a novel and challenging research area in autonomous multi-

vehicle systems. This text is focused on the application of machine-learning techniques in 

addressing these and allied concerns. 

The notion of a fully autonomous vehicle, often synonymous with unmanned ground 

vehicles, comes with predefined characteristics. Unlike traditional car-like robots, these 

vehicles are not tethered. They do not need to be manually controlled or teleoperated by 

humans. Fully autonomous vehicles must be endowed with perception capabilities to sense 

and interpret their environment in order to plan and make actions in real-time. These vehicles 

could be designed in fun or functional fashions. Empirically, fully autonomous vehicles have 

been grouped under different taxonomies largely depending on the level of autonomy or 
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application in question. Firstly, in terms of the level of autonomy, autonomous driving 

systems or vehicles are categorized into six different levels of driving automation. Level 0 

corresponds to no automation. Level 5 designates full levels of autonomy. Other levels 

represent intermediary or so-called active safety features where an autonomous system takes 

over only for certain functions. Secondly, fully autonomous vehicles could also be categorized 

based on their usages in such areas under study as transportation functions, industrial 

logistics, or so-called robotic mission-specific functions. Many of these autonomous vehicles 

are developed to sense and move in structured outdoor or indoor environments that were 

initially enhanced to be more perceptually clear. These autonomous vehicles could be seen 

meandering in such environments as deserts, forests, highways, pavements, pedestrian zones, 

shopping malls, nuclear power plants, research facilities, airports, warehouses, waterways, or 

museum premises, or sometimes intelligent homes. These vehicles are aided by the use of 

different types of sensors, the interpretation of the sensory data, and the execution of 

algorithms realized in software and hardware to perform various sets of actions. The sensors 

could be over the ground, a mechanical representation of the six degrees of freedom compliant 

sensors with a suspended spring base; in the ground, the tractive and non-tractive wheels, the 

castor, ball or tank tracks, or the magnetic wheels; or the aerial vehicles. The central processing 

units used in these autonomous systems are usually centralized within the software and hence 

affect the processor-hardware design. This integration between processor (hardware) and the 

right algorithms (software) is what gives any autonomous vehicle or system its robustness. 

2.1. Definition and Characteristics 

In this paper, we focus on the coordination of autonomous vehicle (AV) fleets. Thus, we 

provide the definition and principal characteristics to lay down the groundwork for the 

cooperative management of AVs. An autonomous vehicle (AV) is a vehicle that can guide 

itself without human conduction. Despite the fact that the driver or passenger must provide 

some information to an autonomous vehicle, as this will affect the cost and arrival time of the 

trip, the decision about the route is at the discretion of each AV based on arrival time and 

working order. 
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This definition highlights the three main characteristics of what is known as an autonomous 

vehicle or intelligent vehicle: sensory perception, decision-making, and navigational 

capabilities. 

Based on the level of automation (LoA) defined by the International Society of Automotive 

Engineers (SAE), the types of vehicles are classified according to the amount of human 

intervention needed in the driving task. There are six levels of automation, ranging from level 

zero to level five and varying from a fully manual to a fully autonomous system. These six 

levels are based on the driving domain, performance and safety of task execution, and fallback 

performance of the human driver. Overall, LoA can be seen as a policy of increasing 

convenience for AV passengers’ trips that are defined according to five operational profiles 

within the main LoA, i.e., levels three to five. These operational profiles list the degree and 

range of human intervention, and the characteristics of fallback dealing. It is important to 

clarify these AV principles, because if we do not address the working method of the AVs, 

there might be an issue with the assumptions laid out in Section 1. 

2.2. Types of Autonomous Vehicles 

There are a number of ways to classify different types of autonomous vehicles, which reflect 

their diverse functionalities and potential applications. In the research literature, the most 

commonly used classification is based on the level of automation: for example, autonomous 

vehicles can be fully autonomous with no human intervention, or require some level of control 

from a human driver, designating them as semi-autonomous. Prevailing classification 

methods in industry define autonomous vehicles as a part of a larger network of connected 

machines, humans, and other entities. Established ways of categorizing include 

distinguishing between vehicle-to-vehicle and vehicle-to-infrastructure communication. 

Examples of autonomous vehicles are abundant, with applications spanning private, public, 

military, and industrial use. Various projects have produced small-scale autonomous personal 

vehicles, such as self-driving cars. A large proportion of research focuses on developing fully 

autonomous systems for persistently explicit purposes, such as autonomous public transport 

shuttles or delivery drones for last-mile transport of goods. 

In a relevant industrial context, a potential client of an autonomous vehicle is a fleet 

management company that may have different cars being different kinds of vehicles as a part 
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of their fleet. The choice of vehicle (and hence the underlying vehicle type) influences the 

coordination strategy of the fleet management algorithms. There are several factors that 

influence the choice of a particular vehicle type: its cost in depreciation and liability, 

regulatory compliance, and technology readiness, among others. Given this insight, we 

propose a classification scheme that aims to incorporate both the commercial priorities and 

the physical architecture of different vehicle designs. We hope that this classification scheme 

sheds light not only on the autonomous vehicle landscape but also on the landscape of 

proposals available for a fleet management company. We believe that this enhanced 

understanding of the problem will improve coordination strategy performance. 

3. Fleet Coordination Challenges 

A fleet of autonomous vehicles (AVs) poses significant complexity for those looking to 

manage them. The vast majority of existing deployments result in fleets existing in a world 

with non-fleet traffic; this provides benefits to the fleet that are not always possible for 

management. By and large, their interactions occur at low density in shared spaces, at slow to 

moderate speeds, and may be impacted by pedestrians or complex elements of the urban 

fabric. If the vehicles are to cooperate, their management systems need to be able to request 

and provide space, time, and other inputs. The vehicles will need to interleave, mix, and 

measure for inherently different flows, processes, and vehicle types. The fundamental 

challenge of managing these systems relates to the fact that if a single element behaves poorly, 

the entire system might encounter issues with traffic management or service delivery. 

Vehicles moving at lower speeds or with different densities can have a longer impact on their 

surroundings, potentially giving them greater heft as bottlenecks or obstructions than the 

same numbers or increased capacities of cars. 

How do you: Increase capacity? Ensure safe and efficient interoperability with non-fleet 

users? Guarantee optimal flow with specific given intermediary infrastructure? Positively 

affect overall fleet dynamics with vertical or horizontal elements of coordination? The ability 

to manage fleets of this nature relies on a global view of traffic involving AVs and non-AV 

systems such as people, personal transport, and other vehicles. Many of the early works on 

AVs suggest that the integration benefits will come from the ability of fleet systems to interact 

with a broader traffic management system, typically an urban or highway management 
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system designed to ensure the safe and efficient movement of vehicles and goods. The vast 

majority of existing systems are built on technology in the infrastructure to directly impact 

the vehicle equipment and overall vehicle movement, although some new technologies in 

infrastructure or in specific field use cases rely on wireless, long-range, or local range 

communication between vehicles and system managers. Such systems form the basis of much 

current research, and increasingly, academic interest is being expanded with technological 

development towards deeper study of the new types of artificial intelligence tools and 

measures that will be required to integrate very large fleets into logistically dense traffic zones 

or corridors. In more than 32 countries worldwide, research and investment are being made 

to introduce wireless communication and vehicle adaptation that will allow — among other 

things — the styling position of vehicles and direction of flow. There’s a gap of about 10 years 

until wider commercial introduction suitable for genuinely federal introduction of research 

developments and similar that will impact the dynamics of space-filling. 

3.1. Shared Spaces vs. Complex Environments 

Shared spaces like residential areas, city centers, and road junctions are populated by people 

conducting their daily activities. Such places, public by nature, host many peripheral events 

including street vendors and kids playing. These generate attention at different scales of time 

and space, reflecting on driving speed or dynamic road width, as well as disrupted traffic 

regularity. Such a characteristic makes traffic in this class of shared space semi-predictable at 

an event level. On the other hand, a large portion of the considered urban street network hosts 

regular traffic patterns that are hard but feasible to predict if one knows the departure time of 

generator locations. These networks are, independently from the traffic conditions, 

qualitatively different from shared spaces as human activity is regular and prohibited from 

leaving sidewalks and crosswalks. There also exist extensive plans for these networks at a 

continental and global scale. 

The most convenient paths in the aforementioned cases are detour-deprived: they are locally 

traffic-free. Uniformly 2, 3, or n detour-deprived paths may not exist in planar or vertical grids 

due to the impossibility of detouring all carriers involved. However, when carriers inhabit a 

multilayer network or a zoning road network, a plurality of detour-deprived paths exists, 

with detours being locally detour-deprived. The latter is not proof but only a sketch to provide 
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insight into the flexibility of the AI module. The kind of AI module exhibited prohibits the 

extension of FF-based AI modules to complex environments, such as shared spaces, while 

shared traffic AI modules cannot handle multilayered environments. A new reasoning system 

must be researched that is universal in the scope of environments and is capable of activating 

shared and shared-modified AI modules, depending on the distribution of carriers in z-planar 

and layers that are quantitatively comparable. 

3.2. Traffic Management and Safety 

Traffic management is important for safety, as congestion can pose a significant safety risk. 

By controlling the movement of vehicles, traffic management systems are used to maximize 

throughput while minimizing queue length, congestion, and delay. Traffic management 

systems make use of data, analytics, and real-time monitoring infrastructures to enhance 

situational awareness for the vehicles and infrastructure alike. Moreover, the data captured 

sometimes allows for predictive analytics – for instance, the prediction of traffic patterns and 

volumes for the purpose of designing traffic management policy. Mechanisms for adjusting 

and managing traffic flows in real time typically involve making short-term decisions about 

routing, lane allocation, traffic signal timing, or speed limits. However, because of the 

limitations of reactive approaches, demand-responsive traffic management techniques have 

been developed, aiming to manage the traffic by influencing the demand. In terms of routing 

techniques, machine learning has a good ability to predict traffic queues and adaptively assist 

routing strategy. In addition to traffic management for traffic safety, there are other safety 

topics linked to autonomous fleets. When a vehicle, either autonomous or driven by a human 

driver, enters a viewpoint of objects in a shared environment, safety is all about how to react 

to the other objects in this environment. The other vehicle has to obey the traffic policy to 

proceed and give right-of-way to others. In some autonomous vehicle fleets, various 

autonomous vehicles are collectively making decisions in order to minimize the cost, such as 

the time to reach the target, in the combined conflict resolution. In the scenario we are 

concerned with now, since all the vehicles are autonomous vehicles under centralized 

decision-making, all the vehicles follow the traffic policy, and the traffic policy obeys the rules 

of traffic regulations. We should be concerned about how to ensure that the system that 

governs all the vehicles’ decision-making processes is completely safe, considering all of the 

situations defined in the scenarios. In addition to decision-making, the safety of fleet control 
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also contains coordination mechanisms of data fusion and sharing, requests broadcasting, and 

registration, and so on. Pursuits in the aspect of safety coordination are of particular interest, 

and more solid research constructed on the basis of standard regulation and mechanisms is in 

urgent need. Considering all the traffic safety curriculum that we have stated, for completely 

autonomous vehicle fleet control, it must combine with the traffic regulation authorities to 

make standardized regulations. In terms of traffic management, a traffic management 

authority is introduced due to its critical role in the security of traffic. Within the other safety 

aspects of the whole system discussed, effective regulation between the authorities and the 

local centralized components is required, or other risks that can arise unexpectedly, such as 

strikes among dispatchers of both authorities and centralized fleet components, for traffic 

management in emergency cases. In addition to these cases, the advanced integrated display 

system of traffic control with higher situational awareness is the tendency of development for 

secure control of traffic. When multiple fleets inhabit the same environment, implementation 

should be taken for coordination across fleets. The decision of fair sharing of the road should 

be given to cross-fleet centralized dispatchers; and centralized enterprise authorities from 

different fleets should have the right to perform roadmap scheduling on the road for multiple 

fleets; and when multiple vehicles from different fleets show centralized and coordinated 

behaviors on the road, the decision should be made by the centralized regulatory and dispatch 

authorities from all the fleets. 

4. AI Techniques for Fleet Coordination 

AI Techniques for Fleet Coordination. Fleet operations can be significantly enhanced and 

optimized with the use of artificial intelligence (AI). These include machine learning and 

optimization techniques. Hence, autonomous vehicles can learn from their and the entire 

fleet's past behavior. There is a rich literature regarding the use of AI in the scheduling and 

control of transportation systems in general and in fleet management in particular. Here, after 

a brief discussion of the general survey on AI in the control and operation of transportation 

systems, we focus on two important learning techniques that hold many potentials for the 

coordination of autonomous vehicles in a platoon and their deployment in the more general 

problems involving a fleet of autonomous vehicles, namely, reinforcement learning and deep 

learning. Reinforcement learning essentially allows an autonomous vehicle to choose the 

actions that optimize the system performance based on the feedback it receives from the 
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environment. Deep learning can be effectively used for pattern recognition such as human 

behavior modeling, dynamic environment prediction, and state-of-the-art path planners. 

Reinforcement learning (RL) is an artificial intelligence technique in which the agent learns to 

make decisions by interacting with an environment and receiving a reward signal for its 

behavior. The physical environment is encapsulated in a state, action, reward, state Markov 

decision process. Assume that the agent operates in a finite time horizon. At each time step, 

the agent observes the state of the system, operates an action, receives a reward, and moves 

to the next state according to a transition model. The agent has to decide on an action that 

balances the trade-offs between immediate and future rewards. The transition model and 

reward function are usually assumed to be unknown to the agent. The temporal-difference 

method naturally falls out of the framework and is also known as on-policy learning. In this 

learning technique, the agent attempts to update the value function to reflect the actual state 

value. The method utilizes this difference to adjust the value of Q(s, a). This method initializes 

the Q-value estimates to zero explicitly and then iteratively updates the value following the 

update rule. In each iteration, the algorithm samples an episode while performing the policy 

to visit the states, actions, and receive the rewards. In the mathematical expression, the Q-

value Q(s, a) is modified to: where 0 ≤ α ≤ 1 is the learning rate, which determines the impact 

of the new knowledge on the existing estimate. In general, the method reflects the fact that the 

estimated function has a direct relationship to the true value function. Therefore, the state-

action value function is modified toward the best current estimate of the future return. The 

discount factor represents the proportion of the future rewards collected by the agent in the 

long or short term. The average reward level is denoted by R(s, a) = E[rt|St = s, At = a]; s, a ∈ 

S × A. 

4.1. Reinforcement Learning 

4. Discussion 4.1. Reinforcement Learning Reinforcement learning (RL) is a subfield of 

artificial intelligence that focuses on enhancing the autonomous decision-making capabilities 

of agents. By implementing an interactive learning process based on rewards, RL algorithms 

allow decision processes to freely explore the best actions within a certain context. Throughout 

this learning curve, the agent can observe the rewards coming from the environment as a 

direct outcome of the actions carried out. Consequently, they can find the optimal strategy to 
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solve a certain problem by acting based on this feedback. The receiving state also depends on 

some internal weight factor, which in turn depends on the previous state and the arriving 

input. By including this feedback loop, reinforcement learning can guarantee adaptive 

behaviors in complex and unknown contexts. This approach makes decision-making 

processes invariant over time and free from predefined rule sets. Although their correct 

training should be performed over a wide variety of traffic scenarios, RL-based systems show 

clear potential to be easily adaptable and effective in practical traffic management. 

Reinforcement learning becomes particularly effective in cooperative and/or adversarial 

multi-agent systems. Some approaches try to learn or maximize global return, which is a 

combination of rewards that comes from the decisions of many agents, while others 

implement communication protocols to exchange information in order to optimize local 

rewards. A basic approach for managing the routing of vehicles is represented by deep Q-

networks (DQN) as two-compartment models. One part is implemented by a convolutional 

neural network (CNN), which is used to approximate the Q-function, while the other part is 

represented by a special kind of memory, called replay memory, used for storing the tuples 

to optimize CNN during the training phase. A simulator was built, which utilized the low-

level controller of a vehicle simulator, while the high-level controller was replaced with RL 

DQN for coordinated vehicle driving. An important issue related to the training processes of 

concerned DQN models refers to the need to be able to face a large variety of operational 

conditions, from very good weather conditions to odometric sensors blocked by dirt or snow. 

This seems to be the reason for the use of simulator communities in recent years, which are 

also able to simulate a variety of communication systems. The functionalities of explored RL 

movements seem to be sufficiently significant and interesting as lessons learned for the 

efficient design of vehicle routing techniques. Instead of collision avoidance, the use of 

reinforcement learning regards the selection of the vehicle’s route toward the target. As 

routing agents, the selected vehicles running in a highway environment, using an adaptive 

cruise control (ACC) mechanism as default. Each agent has to choose between passing in front 

of the other ones or changing lanes and overtaking. Results show an efficacy that strongly 

depends on the studied scenario. Reinforcement learning could represent a feasible solution 

for the dynamic adaptation of vehicle routes toward the user-defined targets in a traffic 

environment. This assumes an up-to-date routing engine, capable of keeping track of the 

changing conditions and contributing dynamically to generate route-data responses based on 
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the current traffic and weather conditions. It goes without saying that recent technological 

improvements in the field of sensors or communication systems will likely increase the level 

of more complex and coordinated traffic movements. Consequently, smart learning 

algorithms will be more important in order to fully exploit these potentials. 

4.2. Deep Learning 

Deep learning, as a part of machine learning, encompasses several approaches to learning 

from vast data. Its main purpose is task-driven pattern recognition on a large scale, using a 

deep hierarchy of layers to learn a multilevel representation in hidden units. One of the most 

widely used deep learning methods is a Convolutional Neural Network (CNN) in the case of 

data that are grids or would have been shaped as grids if they had been regular. This approach 

is heavily utilized in processing visual and auditory stimuli. Currently, CNNs are a basic tool 

in automatic image recognition; efficient utilization of these methods in sensor sprite 

recognition and localization can be found in the development of modern autonomous vehicle 

technologies. 

Deep learning makes it possible to process sensor data within an autonomous vehicle quickly 

and with no manual human intervention. The ability to understand the environment around 

a vehicle is crucial for several subtasks, such as interpreting paths or routes, obstacle 

avoidance, and trajectory planning when organizing a fleet of moving assets within a seaport 

facility. The learning stage, performed as an offline preparation, is a time-consuming process 

and requires expensive computational resources; thus, deep learning is not suitable for use in 

real-time operation. The parallel approach to path or route identification is an online 

adjustment of input and pre-processed computational algorithms utilized for autonomous 

vehicle movement, such as reinforcement learning. This approach facilitates the creation of 

autonomous vehicles capable not only of recognizing well-known paths but also of proposing 

new paths, providing an additional layer of flexibility that increases the resilience of the whole 

system. Autonomously operated fleets provide significant value to large commercial entities. 

However, there is no extensive literature on the technology cooperation of autonomous vessel 

fleet operations and deep learning. Up-to-date technologies and the capability to exchange 

real-time data streams cause the aforementioned technical challenges to evolve rapidly. 

5. Case Studies and Applications 
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In this section, we cover four case studies. In each of the following applications, we discuss 

the chosen strategy, challenges, proposed solution, evaluation, and results. Briefly, Cricket 

Hopper simulated a fleet of interconnected autonomous vehicles coordinating through Model 

Predictive Control and developed a procedure to assess crowd manipulation techniques. As 

a complement to this work, a priority rule was implemented to help facilitate coordination in 

the Watertaxi Pad van Foreest. The Watertaxi application of QC-MDP is capable of finding 

sensible traveling speed and departure times. The use of GridWorld as an application was 

based on multi-grid reinforcement learning training to find aggregational inflow. Using a 

similar concept, Argo AI employs Sparse Proximal Multitask Learning to generate more 

realistic, traffic-aware simulations. Lastly, using a Pedestrian Activity Space Model, the UvA 

transport team developed a vision for modeling and simulating a mixed crowd of passengers. 

Benefits, drawbacks, and limitations for each development are discussed in the conclusion. 

Case studies are featured in articles on logistics, the journal on efficient and safe flow of goods 

and people. Cricket Hopper - The application of MC-MDP for fleet coordination to simulate 

the movement of 26 users at Schiphol. Cricket Hopper used queuing theory to scale the 

demand from 26 people to 299, which is the number of occupants in the Watertaxi Pad van 

Foreest. We programmed a first-come, first-served model and transferred the optimization 

problem into a Q-cost problem. We compiled the code and computed a so-called 'optimal' 

queuing time minimizer for the current number of available taxis. To counteract the crowd, 

we then found the set Q of hu(t) such that the GC-criteria strategy yields at most 0.3 for the 

crowd manipulation. 

5.1. Real-World Implementations 

Real-life implementations of machine learning algorithms to coordinate autonomous vehicle 

fleets have been carried out in recent years in the automotive, public transport, and logistics 

sectors. Some representative examples are described and analyzed next. 

The machine learning algorithms behind Sections 3 and 4 have been implemented in two 

functional prototypes capable of controlling real autonomous electric vehicles. Both 

prototypes operate under different SDCs supported by a specifically designed middleware 

with cloud integration. 
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The ITS UTCAM is a broker device capable of processing cloud information that becomes an 

enhanced plan showing new opportunities or another option. The brokerage algorithm is an 

artificial intelligence (AI) expert system programmed in Prolog that has a database of facts 

and rules. As the number of facts and alternatives increases, a decision becomes more complex 

than human brain capacity. Instead of reasoning each fact and alternative, we need a 

technique to prune the search space following a greedy approach. They have designed a 

convolutional neural network (CNN) combining a few AI techniques, aiming to diverge 

human thinking and actions. The associations between some facts are a matter of expression; 

their weight is subjective and dynamic, i.e., related to the individual’s personal context. Unlike 

implicit expertise, the database aims to make the decision considering (a) usability, (b) 

robustness, and (c) error performance. In order to decide through implicit expertise, we apply 

shallow CNN to filter certain facts or outcomes from the database. Our CNN contains three 

layers, with the first layer enabled to have hierarchical features. Every feature within CNN 

has the potential to connect to different parts of the database (facts and alternatives). The links 

are functional blocks as well as learning to reduce uncertainty. The prototype was designed 

to operate as FCDAI during operations in the city center where the electric buses interchange 

with riders. Overall, a learning of experiences in the field led to the conclusion that ambitious 

schedules and times for the field implementation had to be extended. Moreover, a gap in the 

system integration was identified to deduce that the service provider is not considering 

UTCM’s vehicle occupancy efficient options. 

The Traffic Advisor (TA) is an innovative service where an agent supports people’s decisions 

by seating clever cars “X” together. The Multimodal Traffic Advisor (MTA) goes beyond as it 

is designed to look simultaneously for different transport modes. The TA/MTA will 

communicate with clever autonomous pods and with other CarXs. The task of our machine 

learning model is to determine in advance the “community of intelligence” and to which 

autonomous pods they should allocate when they address the MTA system. The Almaty 

visitors provided a two-year transversal study using students of the host university as a data 

source. Based on the feedback from the study and simulated functionalities carried out during 

the pandemic period, the MTA will be field-integrated during the international visitors' 

experiences. 

5.2. Benefits and Limitations 
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5.2. Benefits and Limitations. Coordinating autonomous vehicle fleets would bring a number 

of benefits but also reveal several challenges. From a social perspective, vehicles would move 

more efficiently through better use of road infrastructure. This would yield lower operational 

costs, for example, less energy used and less waste generated. Coordinated vehicles can also 

be safer as they may make better-informed decisions to avoid aggressive maneuvers, given 

that machine learning techniques can reveal predictive analytics. From an environmental 

perspective, research has been looking at solutions for reducing expected carbon emissions in 

the road sector. Learning vehicle behaviors will lead to less aggressive or smoother vehicle 

operation, which results in a slide-to-stop reduction in maximum longitudinal deceleration, 

reduces the number of collisions that will occur, and mitigates some of the harmful effects of 

such construction. 

Machine Learning for Autonomous Vehicle Fleet Coordination. From a technical point of 

view, to provide global situational awareness, agents will need to select part of the 

information received from their environment. As a result, privacy concerns and the 

possibilities of biases in the system must be evaluated. It is also important to note that 

psychological profiling—be it intended or incidental—is a step outside the typical role for an 

automated vehicle system, and such capabilities create unique challenges and considerations 

in developing machine learning for use in transportation networks. Data storage and 

computations are also still challenging given the large amount of data generated by the 

vehicles. This data also need to be complexly processed and analyzed. Other limitations 

include the need for advanced sensors onboard the vehicles, such as communication 

capabilities, and sufficient computational resources. The applicability of any machine learning 

algorithm to fleet coordination also relies on the quality of the data and its ability to generalize 

from past experiences to new situations. It should also be noted that machine learning models 

are “black boxes,” and any controller learning based on their output may have difficulty 

relating it to system states. Finally, the vehicle operator must place trust in the coordinated 

vehicle fleet for the technology to function. Trust will need to be scalable, sophisticated, 

earned, manageable, authentic, protected, adaptable, and resilient. There are still no survey 

results quantifying trust levels in the public at the time of this review. Starting a new research 

field can meet societal-level resistance or blowback from deployed users if the socioeconomic 

costs are not explained or are not thought to be acceptable. 
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6. Future Direction 

The future of research and development of machine learning for autonomous vehicle fleet 

coordination presents several opportunities. The technology of deep learning is evolving at a 

rapid pace, and in the near future, algorithms will be developed to facilitate the continual 

learning that current algorithms cannot handle. This will involve the continued acquisition of 

data as well as the evolution of artificial intelligence. Machine learning techniques are being 

developed for transferring learned skills and representations to new tasks that are not shown 

during training. As a result, the efficiency of an autonomous vehicle will evolve not just with 

experience, but also in conjunction with the continual advancement of machine learning 

algorithms. There is also potential for further integration of autonomous vehicles with 

transportation infrastructure. Indeed, machine learning for autonomous vehicle fleet 

coordination could be developed in conjunction with smart cities and their policies. 

Machine learning techniques for autonomous vehicle fleet coordination are in their infancy, 

and there are numerous areas in need of further research. Chiefly, the issue of resource 

allocation between the autonomous vehicles in the fleet must be explored. Significant 

unknown factors could also be addressed in a more detailed model, such as the risk of taking 

on passengers or transporting goods, or the level of congestion within a city. The concern of 

ethics, in addition to the formidable regulatory framework required, is another current 

research area in need of study. Government, the motoring industry, and the automotive 

industry regulators must continue to work together to create engines, infrastructure, and 

internal safety policies in the most important fields. Industry stakeholders are also encouraged 

to collaborate on standardizing hardware, firmware, and more advanced fleet-coordinating 

software, in accordance with current best practices. Public acceptance, security, and the 

robustness of the algorithms specifically for autonomous vehicle fleet coordination will be 

difficult. Some familiar statistics provide an unclear roadmap for the future of autonomous 

vehicles, but a large number of the world's leading technology and automotive companies are 

already experimenting extensively with the technology. Further research is needed to explore 

how autonomous vehicle fleet coordination can become a worthy investment. 

7. Conclusion 
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In the following text, we presented our results and insights obtained from investigating the 

coordination of autonomous vehicle fleets with machine learning for decision-making and 

control. The introduction reminded us the reasons why coordination is a necessity for AV 

fleets, and current challenges. We then presented some theoretical approaches and our 

applications-oriented approach to various problems including fleet rebalancing, platooning, 

and intersection crossing permission negotiation. Safe, efficient and trustworthy 

transportation systems of the future are impossible without addressing the coordination 

challenges of future autonomous vehicle (AV) fleets in advance. One of the primary 

contributions of this paper is to reaffirm the justification of our investigation, starkly 

supported by the fact that our world foresees a variety of upcoming transportation modes and 

systems which urgently need coordination tools and methods. Hundreds of billions of dollars’ 

worth of investment is being made as the coming overtures of the fourth industrial revolution 

begin to reveal themselves. As more and more people bring home money from the spectrum 

of multiple employment opportunities, the goals, behaviors, and expectations of the general 

population will rapidly accelerate. The skills/hobbies combos that they will bring into the 

future workforce have never been tested by time. The life experience generation of the future 

workforce is anything but predictable. Given this reality, we must rethink how we train 

people to be effective workers in the coming age of uncertainty by those who hold the mantel 

of destiny with regards to training and employment. This statement contributes importance 

to our already-coordinated study. The need for further investigation cannot be 

overemphasized. Resounding and precedential transformations are expected to be 

forthcoming for the automotive industry as the economy of scale-based growth is 

materialized. In future systems, planning and management of large AV fleets according to the 

requirements of the entire transportation system or society is essential. Close-knit 

collaboration is needed between all stakeholders to understand these facts and requirements, 

aspects of AI and machine learning that provide us with tremendous support, responsibility, 

and ethical questions that cannot be ignored. We call for a new era of intentionally planned, 

ethical, and conscious AI and machine learning development. 
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