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1. Introduction 

Traditional autonomy in vehicles can be divided into perception, prediction, and policy 

decision-making—the vehicle first perceives the surroundings through various sensors, such 

as cameras, LIDAR, and radar, tracks relevant objects based on sensor information, uses the 

prediction model to predict the future position and behaviors of moving obstacles, and then 

outputs policy decisions to control the vehicle movement. In recent years, thanks to the rapid 

development of deep learning, autonomous vehicle navigation has evolved from the original 

architecture into an end-to-end manner, where learning-based methods play the dominant 

role in autonomous navigation [1]. 

Non-learning-based approaches such as visual odometry (VO) and the artificial potential field 

(APF) are not adaptive to environmental changes and struggle with unknown dynamic 

environments, while end-to-end deep learning (DL) such as convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) require large amounts of labeled data, which 

is difficult to collect for navigation in unknown environments. Lately, they are not adaptive 

to environmental fluctuations and are highly dependent on initial learning. Inherently, Deep 

Reinforcement Learning (DRL) can learn behavior-specific navigation policies from the 

interactions with the environment, avoid needing large-scale labeled data, and make it 

possible to visualize policies that are crucial to solving the task, which can be expected to 

explore unseen policies and make breakthroughs in autonomous navigation, especially in 

dynamic environments. 

1.1. Background and Motivation 

Planning terrain navigation strategies are efficient than traditional methods, as they better 

generalize to various terrains. However, the terrain navigations lack the adaptability to 
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unseen obstacles UOs, such as pedestrians, or approaching obstacles, AO, that hinder the 

traversability of the terrain during the motion, and could not adapt fast-enough to dynamic 

variations of the terrain. While perception-based approaches provide a safety layer to the 

vehicle’s decision-making by providing the map of the environment, an especially challenging 

domain is routing, where the vehicle needs to plan its motion in the presence of unknown 

dynamic obstacles. Both model-based and learning-based techniques are employed for 

handling navigation in the presence of UOs and AOs. Many studies have addressed handling 

unknown obstacles using model-based methods; e.g. traditional deep-learning mapping 

approaches can rely on maps generated from depth image-based methods. Reinforcement 

learning (RL) can be used to plan paths while avoiding unknown dynamic obstacles [2]. 

Autonomous exploration with the aid of mobile robotics is an important research topic that 

has gained significant research attention in recent years. Robots can perform diverse tasks in 

unknown or complex environments such as hazard recognition and avoidance, door opening, 

object detection, and segmenting, understanding and searching semantic regions. To explore 

and map unknown or partially-known environments, traditional exploration mechanisms use 

a predefined navigation policy (i.e., learning-free algorithms) or a learning algorithm (i.e., 

learning-based algorithms). In conventional navigation strategies, artificial potential fields, 

graph search algorithms, evolutionary algorithms, population-based algorithms, optimal 

control, and randomized algorithms are used [3]. 

1.2. Scope and Objectives 

It must also be noted that input data allow for the consistent use of a certain infrastructure- 

mainly an area of fixed light and road conditions at the right time of day. It is therefore a part 

of the tasks to adapt to altered lighting conditions, weather and object size in the further 

research and improvement of the detected object. Information presented in derived from this 

machine learning technique for pedestrian detection should be continuously exchanged with 

surveillance videos for autonomous driving. The driving decision taken will then effectively 

improve the robustness and accuracy of AVs when changing away from fixed light and road 

conditions [3,8]. 

A current fascination of society has been the field of Ambient Assisted Living (AAL) and the 

development of systems that provide pertinent and “intelligent support” while observing 

data protection regulations. This research topic explores new machine-learning technologies 

https://biotechjournal.org/index.php/jbai
https://biotechjournal.org/index.php/jbai


Journal of Bioinformatics and Artificial Intelligence  
By BioTech Journal Group, Singapore  54 
 

 
Journal of Bioinformatics and Artificial Intelligence  

Volume 2 Issue 1 
Semi Annual Edition | Jan - June, 2022 

This work is licensed under CC BY-NC-SA 4.0. 

and investigates the choice of suitable embedded hardware. Previous work on the detection 

of road users has been studied, and an in-depth overview of different fusion strategies to 

combine the detection of radar or optically detectable objects with the intention of pedestrians 

has been provided. As a result, it was noted that many current applications in the pedestrian 

detection field select the strategy of sensor fusion between different sensors.2 This somewhat 

limits the impact of dynamic uncertainty during, for example, car-path hills. 

2. Fundamentals of Reinforcement Learning 

The choice of actions to perform may depend on the state of the environment and the actions 

need to be taken sequentially in order to achieve a goal. A computer program within is 

gradually introduced to the environment and can master a quadratical task like playing chess, 

go or video car racing through repeated trials. Although the history is long and filled with 

triumphs and disappointments, the last decade has witnessed a large push for the use of RL 

in real-world domains including healthcare, education, and transport. 

[4] Reinforcement Learning (RL) can be regarded as the most powerful AI paradigm for 

teaching a machine how to act by interaction with the environment and learning from 

mistakes. It is a popular paradigm for robot or autonomous car control where the engine is 

often asked to play through trails in the graphics engine of the simulator and the learning 

process is completely unsupervised. The joint learning-based decomposition classes that 

involve scenario identification (actions that perform best), scenario modeling, control laws, 

and autonomous vehicle energy can be proposed. The prototype program concerns Valet and 

Car scenarios with target and target chasing tasks that can be achieved in them.[5] 

Reinforcement Learning (RL) is derived from psychology-based animal behavior psychology 

and can be considered as a change. However, it has recently been subject to a resurgence of 

attention by AI researchers and is becoming somewhat popular. It aims to enable a computer 

program to learn to carry out tasks by interacting through its environment and trial these are 

in the absence of other human guidance or supervision, with the Computer communicating 

the computer. This task of learning to perform through interacting with an environment is in 

many ways the setup shares many similarities with human and animal learning and decision-

making, so in this way it is held a primary obtained Observed techniques for machine or 

artificial intelligence. 

2.1. Definition and Key Concepts 
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Moreover, due to the fact that a traffic light does not appear in enough environments, the 

stationary agent cannot use the traffic light in some real scenarios, causing it unable to cross 

the road and indulge in an infinite time wait. Generally speaking, complicated autonomous 

vehicle navigation and control problems are sequential decision-making problems. 

Reinforcement learning is a natural and promising alternative for addressing these sequential 

decision-making problems and autonomous decision and control tasks. Therefore, we focus 

on reinforcement learning techniques for AVs in the scope of this paper [6]. 

Autonomous vehicles (AVs) are embodied with intelligent perception and adaptive control 

capabilities, and thus, learning algorithms including supervised or semi-supervised learning 

are primary choices for endowing AVs with intelligent decision and control capabilities. For 

example, convolutional neural network (CNN) based remote driving [7] enables vehicles to 

collect clockwise and counterclockwise steering angle and their corresponding input images 

in a driver-training sessions, and the CNN learned from the training sessions can help perform 

remote driving. However, remote driving is not a desirable approach for autonomous vehicle 

navigation in long term. In this paper, we are interested in autonomous driving systems for 

stationary agents in the environment, where a stationary agent refers to a sit-and-wait control 

mode that stays in the current location before moving. The major difference between the sit-

and wait agent and moving agent is that the stationary agent needs waiting agents and is 

waiting for the minimum time that the waiting agent(s) pass(es) an appointed location 

because a moving agent does not need waiting agents. 

2.2. Types of Reinforcement Learning Algorithms 

[8] Reinforcement learning (RL) is a model-free algorithm for controlling systems. The reward 

function guides the agent to learn a system's optimal policy, according to which it finds the 

actions that maximize the cumulative reward.[1] RL can be classified into model-free and 

model-based algorithms. Model-free algorithms do not need prior information for the system 

states and dynamics but learn an action-value function or policy directly. In large state spaces, 

approximations such as deep reinforcement learning are used to work with large-scale 

problems. Model-based RL learns a model of the environment and may use the model to learn 

approximate value functions or policies. The paper by Torabi describes multiple model-based 

and model-free algorithms to demonstrate how the various types of RL algorithms can be 

adapted to autonomous driving navigation. It investigates deep reinforcement algorithms 
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such as DQN, DDPG, PPO, and A3C, and then reports results on the creation of a front-end 

feedforward neural network and social GAN to compare. The article shows that from the six 

different RL algorithms, PPO can efficiently work with the autonomous driving environment. 

[9] All authors of these papers used CARLA: Community Automotive Research Laboratory 

environment (Karaman and Frazzoli, 2012), with differences between the front-end models. 

The primary difference for all papers is the adoption of different front-end networks for the 

control tower. However, the backend side remains the same by using the Proximal Policy 

Optimization Algorithm. The study selected ten examples of research papers in the field of 

autonomous driving, as a guide to applying the CNN, GAN, and RNN models in the front-

end side of the CARLA simulation environment. 

3. Autonomous Vehicle Navigation 

The majority of contemporary machine learning based planning and control models for 

autonomous vehicle navigation are mainly tailored for specific scenarios where they are 

trained and have not shown significant success under difficult scenarios. The existing models 

that are based on learning lack the diversity and adaptability which are required occasionally 

for situations that are rare in the training scenarios. Furthermore, the computational cost of 

sampling-based or optimization-based methods may be extremely high. For instance, widely-

used deep neural networks (DNNs) require a considerable number of samples for training. 

And the model trained in one environment may not generalize well to another. A common 

strategy for real-time robot navigation is using a powerful analytical algorithm for trajectory 

planning and using machine learning models for steering and acceleration control. The 

machine learning models, in this case, are trained offline on human data to predict the states 

of nearby obstacles in the predicted trajectory space for the autonomously planned trajectory. 

Human feedback has shown potential for improving autonomous robot navigation in 

complex environments [10]. In this context, we like a to contribute to reinforcement learning-

based approaches in autonomous vehicle navigation, providing a detailed summary of 

existing studies and research gaps, and suggest possible solutions and challenges for them. 

Reinforcement learning (RL) has shown promising results in various control applications and 

has gained considerable attention in the field of autonomous vehicles navigation during 

recent years. RL-based navigation systems do not rely on explicit feature generation and 

therefore provide high generalization ability in a changing environment. In the context of 
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autonomous driving, deep reinforcement learning (DRL) [9] has been utilized to learn a policy 

that optimizes vehicle states in order to maximize cumulative rewards associated with a safe 

and comfortable driving behavior. Navigation systems based on RL have the advantage of 

possessing learning ability, improving over time, and showing low reliance on sensor 

accuracy. A behavior-engineered navigation system has limitations to address real-life 

complexities that are not easily captured in a model. RL-based systems have the potential to 

be tested in a virtual environment, which reduces the risk and time required for the 

development of systems. Inverse reinforcement learning, a prominent branch of RL-based 

approaches, has also been investigated for developing autonomous navigation systems for 

vehicles. The expert feature extraction, reward function definition, and decision making are 

important attributes of IRL. The approach also maneuvers well in data scarcity because it can 

imitate the arbitrary expert rather than the expert whose dataset is used during training [11]. 

3.1. Challenges in Dynamic Environments 

As a result, it is difficult to handle human-like robot navigation tasks such as reason 

intentionally and reason intelligently. Also, at present, there is hardly research work done for 

convoluted tactical-level autonomous navigation on an agile mission in unknown open 

environments under the DRL framework. Reinforcement learning algorithms are known to 

be data hungry, hence lack of enough training samples often leads to suboptimal policy. 

Although model-based planning has been used to generate trajectories in traditional optimal 

control algorithms. But in a complex and dynamic environment, actual scenes cannot be 

justified with the same kind of scene. So, the planning trajectory obtained in the simulation 

environment cannot be highly beneficial in the actual scenario [12]. 

- Sample efficiency largely depends on the complexity of state-action space, deep Q-network 

(DQN) is not sufficiently scaled against high-dimensional tasks, and model-based DRL 

method still has a relatively high consumption of computation. - Trajectory generated by the 

conventional rule of the geometric center of ground-based robots is simple and can hardly 

bypass dynamic obstacles. This is prone to missing exploration and improve the safety 

performance poorly. 

Conventional planning techniques, such as A* or RRT, are not able to effectively deal with 

dynamic and complex environments [13]. In recent years, a number of DRL approaches have 

been proposed to tackle the challenges in autonomous navigation on a mission with a prior 
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map in a simple and unchanging environment [3] , while few researches to be closely involved 

with the complex and dynamic tactical-level decision making in an open, missionspecific and 

unknown environments. For instance: 

3.2. State-of-the-Art Techniques 

In self-driving car control methods, many deep reinforcement learning (DRL) algorithms such 

as DQN, DDPG, PPO, A3C, TRPO, etc. are used in the literature in order to manage the 

environment perception and decision-making tasks. The main purpose of DRL used in 

autonomous vehicle navigation is to manage environment perception, control and decision-

making processes. While perception and control layers are handled separately in traditional 

autonomous vehicle control methods, DRL enables end-to-end learning by being able to make 

decisions with high-level perception without needing individual control outputs. In [9], a 

driving control system is designed by training a deep deterministic policy gradient 

architecture in a virtual car racing environment. It has been proven that the driving control 

system trained in a virtual environment by reinforcement learning has been successful in the 

real world. In [14], double deep Q-learning and deep reinforcement learning-based steering 

modes are proposed for decision-making processes of autonomous vehicle navigation in 

outdoor environments. Specifically, the Faster R-CNN system was developed for outdoor 

environment perception, while Carla simulator was used for environment perception and 

decision-making purposes. 

The capabilities of reinforcement learning (RL) techniques in outdoor environment perception 

and control could be seen in many studies in the literature. However, to adapt the RL 

environment perception and control out of the virtual world like in CARLA simulator, is a 

challenging area since the environment dynamics are so unpredictable. Due to this dynamics, 

the false decisions can cause the autonomous vehicle to collide with the environment. For this 

reason, it is very important to adapt the RL techniques to perform optimally in dynamic 

outdoor environments [15]. Although many studies could be seen in the literature which 

proposes RL based perception and control in real environments, CARLA simulator, which has 

a very realistic car and pedestrian control system, could be a big advantage during training 

RL’s environment perception and decision-making models. 

4. Integration of Reinforcement Learning in Autonomous Vehicles 

https://biotechjournal.org/index.php/jbai
https://biotechjournal.org/index.php/jbai


Journal of Bioinformatics and Artificial Intelligence  
By BioTech Journal Group, Singapore  59 
 

 
Journal of Bioinformatics and Artificial Intelligence  

Volume 2 Issue 1 
Semi Annual Edition | Jan - June, 2022 

This work is licensed under CC BY-NC-SA 4.0. 

Deep Reinforcement Learning (DRL), a subset of RL, leverages stacked layers of neural 

networks to estimate what actions an agent should take on the basis of its current state, a prior 

history of states, and the rewards it has experienced [14]. In autonomous vehicles, DRL serves 

for learning to drive in complex environments and better adapt the vehicle response with 

respect to common control functions, such as longitudinal and lateral control, obstacle 

avoidance, and speed adaptation. DRL training sample data can be collected with simple, 

scalable game simulations and cheap data augmentation in terms of different starting 

configurations, rival vehicle types, and various road settings, thus reducing the 

environmental complexity [13]. 

Reinforcement Learning (RL) is a computational paradigm in which a learning system called 

an agent learns how to decide the best actions to perform in different situations to maximize 

a notion of cumulative reward [7]. Adding RL to a controller requires a training phase in 

which a reward function is defined to make the physical implementation of the system learn 

expected behavior. 

4.1. Sensors and Data Collection 

The primary objective of our path planner is to track the waypoints (or the small sequence 

thereof) from the reference path such that the intelligent vehicle follows these waypoints (with 

a future point of reference). [16] Here tracking waypoints on-road helps to increase the 

adaptability of the vehicle to move around the variable types and densities of traffic, red-

lights, and pedestrians. Multi-objective lane change trajectory optimization technique has 

been proposed, where the vehicle is driven in the centre lane when no obstacle is present on-

road, and when an obstacle is present on-road, the vehicle is driver-driven in right or left lane 

to avoid static or dynamic obstacles, keeping consider driving in the centre lane safely (lane-

deep learning agent). Once the obstacle is not in front, it can again move to the centre lane and 

continue driving. Moreover, the visual condition perception allows the intelligent vehicle to 

operate in all-day, nighttime, heavy rain, heavy snow, fog, and daytime weather con ditions, 

and cluttered, uncluttered, indoor, outdoor conditions and situations. 

The problem addressed in this research is to develop generalizable deep reinforcement 

learning algorithms that allow autonomous vehicles to navigate safely through dynamic and 

complex urban environments such as those present in downtown areas and in residential 

zones with parking vehicles, traffic lights, and pedestrians. [17] These environments present 
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on-road frequently moving obstacles, and the autonomous vehicle needs to adaptively react 

to moving obstacles in real time. This type of mixed autonomy, which operates on variable 

types of moving obstacles and receives only visual input from a camera, is not studied to a 

great extent in the current literature. 

4.2. Decision-Making Process 

In order to handle the real-time decision-making process in the autonomous navigation of an 

autonomous vehicle in a dynamic environment, a decision support system was introduced for 

the vehicle so that it predicts and adjusts its movement. The movement prediction mechanism 

in this study can be variable. The use of reinforcement learning makes it possible to predict 

movement with the minimum information received from the environment and thus 

contributed to controlling the movement by predicting the sudden changes in the 

environment. Reinforcement learning algorithms have been used as an alternative to 

modeling algorithms to solve the decision-making problem of using complicated dynamic 

models in the proposed solution in the context of both modeling of movement and handling 

the uncertainties developing in the environment. [4] as well. 

Deep reinforcement learning architectures designed for autonomous navigation in dynamic 

environments are also being developed. One study presented a deep reinforcement learning-

based architecture for the decision-making process of an autonomous vehicle in dynamic 

environments [8]. This proposed architecture of the Decision Transformer Network Model 

(DTNM) consists of three main sections to identify incentives, predict future occurrences, and 

determine the appropriate driving behavior. The DTNM was evaluated in simulation and 

visual data, but the authors stated that hardware validation would be the next step. 

5. Case Studies and Applications 

To date, considerable work has been done to extend Deep Q-Networks (DQNs), such as Q-

learning with target networks, double DQN, and dueling network architectures. Efficient use 

of DQNs is important, as the poor practical performance can be attributed to the Q-learning 

process, in which the effect of overall reward signals can be over/underestimated; errors can 

be propagated between nearby time-steps, and average susceptibility to oscillation and 

divergence of the update process can be observed. Separately, from the environment-

generated feedback signal, deep neural networks can learn supplementary expert policies 
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from observing human demonstration data not generated from the domain to be learned. The 

generality of these techniques is striking, as the learner only requires access to some 

behavioral demonstrations of the target task. 

The Double Deep Q-Network (DDQN) algorithm has played a significant role in many 

existing reinforcement learning approaches [14]. RL-based navigation systems require rich 

sensory input, and autonomous vehicle navigation environments must meet certain safety 

constraints. The performance of the autonomous vehicle navigation system is known to be 

affected by how well it relates the sensory information to the corresponding state space 

representation [18]. However, the current methods of transforming the state space are often 

very rough, and there is still no explicit unified model paradigm in this regard. The early 

development of machine learning referred to various classic problems in a one-to-one 

correspondence that should be specified explicitly before learning. 

5.1. Urban Traffic Scenarios 

Algorithms for localization of autonomous vehicles for example; ICP or LOAM developed as 

a stand-alone module. Instead, both algorithms proposed here manages to contribute in both 

localization and object tracking modules. Urban traffic scenarios are very challenging with 

high density and different velocities. On the other hand, many unstructured objects are 

observed from the LiDAR’s sensor point of view [15]. There is also a challenge how to join 

road network. As a natural result, high-quality and rich datasets are difficult to gain. Please 

refer to the Section “Introduction” for further details. All these make algorithms designed and 

tested in other datasets overfit and hard to be transferred to other datasets. All of these 

challenges pushes the community to work on same datasets which is named nuScenes dataset. 

On the contrary, the parameters might be different. Combining the enhancements on the 

analytical algorithms for instance, by clustering of li-dar points during the process of 

registration, we are able to plan the next navigation decision in a changable setting, which is 

mostly strucured. Besides, present analytical smartphone scope architecture workings only 

under assumption of a static environment and it crashes in the lack of such. With this in mind, 

we need to get rid of the correctness uncertainty concerning the presented input data, so 

instead of a selection from the collected surface elevation data, we have to increase robustness 

by representing the object tracking and prediction in the navigation decision in a unified way. 

On the other hand, the above algorithms can learn from different trajectories collected from 
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eg. other vehicles, but they cannot able to express new collision-free trajectory if their point 

clouds are not rotated to some other view perspective. Steering new considering this 

compatibility constraint is a future research interest. 

Recent advances in the domain of autonomous navigation present Reinforcement Learning 

(RL) as a governing paradigm. Urban traffic scenarios are highly dynamic and centralized 

traffic control systems have difficulties in managing them [19]. When a traffic control system 

is absent, neural networks and RL have been employed in various traffic flow optimization 

settings. Reinforcement learning, considered as a universal method, has been successfully 

applied to un-signalized urban traffic regulation. In a microsimulation environment, an DQN 

(Deep Q Network) agent, trained using the retimed traffic light phase durations considering 

the dynamic aspects of the environment, successfully reduced the average passenger waiting 

time of the vehicles. Therefore, the effectiveness of DQN was shown in handling dynamic 

aspects of traffic flow in a rule-based urban intersection. Real-world scenarios have not been 

investigated by existing studies with (well performing) highly non-linear DNNs that differ 

from rule-based simulations with respect of their complexity and other aspects. Real-world 

intersections and traffic systems consist lots of structured and unstructured data, which, 

together with the lack of true, static imitate-able models (e.g. neighbors behaviors) and inner 

limitations of our learning method, can lead into sub-optimal behavior of the trained agent in 

the real world. A real-world-friendly approach was therefore needed to be created using RL 

for un-signalized control of our target, the urban intersection. An alternative urban closed 

loop control strategy combining the ability to capture complex and dynamic traffic flow 

regulation dynamics with an interpretation of the search for the global optimization in real 

time has a great potential to be developed. 

5.2. Highway Driving 

Overall, the encouraging empirical results in the paper thus indicate that the PASP-DQN 

approach may better able to use off-policy data and learned models to maximize the non-

global rewards, and represents a promising avenue for future research. Furthermore, the 

emergence of PASP-DQN also suggests alternative explanation for the successful results of 

using hint rewards together with off-policy reinforcement learning. 

This chapter investigates a variant of the reinforcement learning (RL) formulation, called 

action suffix prediction, that aims to learn near optimal policies without needing to have 

https://biotechjournal.org/index.php/jbai
https://biotechjournal.org/index.php/jbai


Journal of Bioinformatics and Artificial Intelligence  
By BioTech Journal Group, Singapore  63 
 

 
Journal of Bioinformatics and Artificial Intelligence  

Volume 2 Issue 1 
Semi Annual Edition | Jan - June, 2022 

This work is licensed under CC BY-NC-SA 4.0. 

access to a global or consistent reward signal [10]. Leveraging off-policy learning and learned 

rewards, Prioritized Action Suffix Prediction DQN (PASP-DQN) is able to achieve the optimal 

policy on term decaying tasks of classical control, Atari and EODM domain. In particular, the 

default PASP-DQN network architecture consistently outperforms the Duelling DQN [20] on 

all four investigations [15]. 

6. Evaluation Metrics and Performance Analysis 

The most crucial properties required from intelligent agents in any learning environments 

where a real-world robotic application can find its use, such as autonomous driving, are 

safety, adaptation, efficiency, and ability to learn from raw sensory data. Safety is always the 

primary objective, and failure to follow the safety measure in autonomous vehicles can be 

fatal. Thus, a massive effort has been made in recent years to build an intelligent autonomous 

driving system, efficient enough to understand the nominal surroundings and their least 

changing configurations. The system must be capable of adapting to new changes in the 

surroundings, such as new construction, new kinds of guards, diversions, and parking lots. 

Moreover, it should be capable of learning trajectory data from the entropy of its immediate 

past, as well as being able to optimize it with different conditions. In the MaRLn approach, 

the agent-based navigation environment is capable of investigating the given prompt across 

different metric sensors, comparing the measured values, and using a pre-trained deep 

reinforcement learning module as a navigation policy to pick an optimal action that is adapted 

to the environment [7]. 

Learning-based approaches have recently gained significant interest in robotics research and 

applications [ref: 38e70e63-9b04-4abe-a279-739dff71ed06, 4e619ff2-4eeb-4258-8239-

2267b62478b7]. Deep learning-based approaches, such as deep reinforcement learning, can 

learn features directly from raw sensory data to enable navigation in highly complex 

environments. Deep reinforcement learning (DRL) algorithms adapt to changes due to 

learning from their own experiences and can be employed in both simulation and real-world 

scenarios. Hence, they are effective in providing an agile and adaptable navigation solution 

in the dynamic environment [21]. 

7. Future Directions and Emerging Trends 
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In addition to the summary of case studies, emerging trends, and open challenges have been 

identified including closed-loop navigation, uncertainty-aware navigation, hierarchical 

learning, end-to-end agents, few-shot learning, multi-agent systems, multi-modal learning, 

imitation learning, one-shot imitation from humans, better exploration methods, transferring 

good driving habits, over-the-air updates, robustness of learned policies, long-term 

degradations in traffic dense environments, reusable and modular component-based learning, 

training and deployment in the presence of sensor noise and dropped packet loss, consider 

multi-scale environment and routing updates, and also addressing trade-offs between driver 

comfort and behavior versus efficiency and safety [3]. An overview of the state-of-the-art 

Reinforcement Learning-based tools and methodologies for developing autonomous 

navigation for wide variety of scenarios and scenarios that have emerged in the autonomous 

matter research community is also presented. 

Developing robust and dependable autonomous vehicle architectures for safe, reliable 

operation in dynamically-evolving real-world environments remains an open challenge for 

the research community to address. Although recent advancements in computational 

infrastructure and machine learning algorithms have driven significant improvements in 

robustness and generalization capabilities in simulated training environments, further work 

is critical to combine these advancements with perception, real-world considerations, and in-

action decision-making to translate promising results from the simulator to the real world 

[22]. In this technical report, we have provided an overview of several reinforcement learning 

paradigms, architectures, methodologies, and scenarios for autonomous navigation from the 

study of different existing methodologies with emphasis on recent trends, and open 

challenges [6]. 

8. Conclusion 

[14]Autonomous vehicles require an efficient autonomous decision-making algorithm to 

operate in dynamic environments. In this paper, we discuss and evaluate various 

reinforcement learning (RL) algorithms for this purpose, on a toy data set with traffic and 

pedestrians to present a decision-making problem. The RL algorithms were evaluated on 

single-agent and multi-agent strategies using traffic light settings in different configurations 

representing various intersection types. The inclusion of pedestrians and different 

orientations was set to challenge the model with limited observations in learning to avoid 
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them in the intersections. The evaluation feedback was based on bad behaviors when driving, 

such as driving through red lights, pedestrian collisions, and exceeding speed limits. These 

parameters were used to define the performance of the algorithms. The results indicated that 

faster R-CNN in conjunction with Double Deep Q-network (DDQN) in the pathfinder 

environment yields both robust and efficient performance, getting the best average reward 

and time to complete the navigation.[6]This system can learn from raw pixel data and develop 

a map of the tyre-force environment without explicitly specifying the dynamics. We also 

explore queries for which the system needs to reconstruct the static environment and those 

for which it can exploit online exploration to generalize to new scenarios. A real-world vehicle 

application is presented for reconfiguration manoeuvre planning on the REINVENT test 

vehicle, where the velocity vector of the vehicle is optimized for a LuGre tyre model. We 

demonstrate experiments on changes of the peak coefficient of friction, which shows that a 

dynamics-aware, data-efficient policy is learned. Motion planning based on offline dynamics 

data is able to achieve a top speed of 2.95 m/s while the system achieves 3.05 m/s with an 

adaptive online training strategy, indicating that dynamics-adaptive feedback policies are 

advantageous when the ROI changes during train time. Software for submission is released 

on [Link], and supplementary videos are available at [Link] 
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