Machine Learning for Predicting Patient Outcomes in Intensive Care Units: Developing machine learning models to predict patient outcomes and optimize care delivery in intensive care units
PDF

Keywords

Machine learning
ICU monitoring

How to Cite

[1]
Dr. Xavier Dubois, “Machine Learning for Predicting Patient Outcomes in Intensive Care Units: Developing machine learning models to predict patient outcomes and optimize care delivery in intensive care units”, Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 2, pp. 23–29, Sep. 2024, Accessed: Nov. 21, 2024. [Online]. Available: https://biotechjournal.org/index.php/jbai/article/view/77

Abstract

Machine learning (ML) techniques have shown promise in predicting patient outcomes in intensive care units (ICUs), aiding in the optimization of care delivery. This paper presents a comprehensive review of ML models used for predicting patient outcomes in ICUs. We discuss the challenges, methodologies, and applications of ML in this context. We also provide insights into the future directions of research in this area.

PDF

References

Saeed, A., Zahoor, A., Husnain, A., & Gondal, R. M. (2024). Enhancing E-commerce furniture shopping with AR and AI-driven 3D modeling. International Journal of Science and Research Archive, 12(2), 040-046.

Shahane, Vishal. "A Comprehensive Decision Framework for Modern IT Infrastructure: Integrating Virtualization, Containerization, and Serverless Computing to Optimize Resource Utilization and Performance." Australian Journal of Machine Learning Research & Applications 3.1 (2023): 53-75.

Biswas, Anjanava, and Wrick Talukdar. "Guardrails for trust, safety, and ethical development and deployment of Large Language Models (LLM)." Journal of Science & Technology 4.6 (2023): 55-82.

N. Pushadapu, “Machine Learning Models for Identifying Patterns in Radiology Imaging: AI-Driven Techniques and Real-World Applications”, Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, pp. 152–203, Apr. 2024

Talukdar, Wrick, and Anjanava Biswas. "Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity." arXiv preprint arXiv:2408.04023 (2024).

Chen, Jan-Jo, Ali Husnain, and Wei-Wei Cheng. "Exploring the Trade-Off Between Performance and Cost in Facial Recognition: Deep Learning Versus Traditional Computer Vision." Proceedings of SAI Intelligent Systems Conference. Cham: Springer Nature Switzerland, 2023.

Alomari, Ghaith, et al. “AI-Driven Integrated Hardware and Software Solution for EEG-Based Detection of Depression and Anxiety.” International Journal for Multidisciplinary Research, vol. 6, no. 3, May 2024, pp. 1–24.

Choi, J. E., Qiao, Y., Kryczek, I., Yu, J., Gurkan, J., Bao, Y., ... & Chinnaiyan, A. M. (2024). PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nature Communications, 15(1), 5487.

Borker, P., Bao, Y., Qiao, Y., Chinnaiyan, A., Choi, J. E., Zhang, Y., ... & Zou, W. (2024). Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Cancer Research, 84(6_Supplement), 7479-7479.

Gondal, Mahnoor Naseer, and Safee Ullah Chaudhary. "Navigating multi-scale cancer systems biology towards model-driven clinical oncology and its applications in personalized therapeutics." Frontiers in Oncology 11 (2021): 712505.

Saeed, Ayesha, et al. "A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 1-9.

Pelluru, Karthik. "Enhancing Cyber Security: Strategies, Challenges, and Future Directions." Journal of Engineering and Technology 1.2 (2019): 1-11.

Tatineni, Sumanth, and Sandeep Chinamanagonda. "Machine Learning Operations (MLOps) and DevOps Integration with Artificial Intelligence: Techniques for Automated Model Deployment and Management." Journal of Artificial Intelligence Research 2.1 (2022): 47-81.

Downloads

Download data is not yet available.