Machine Learning for Predicting Patient Readmission Rates: Developing machine learning models to predict patient readmission rates and optimize healthcare resource allocation
PDF

Keywords

Feature Selection
Predictive Modeling

How to Cite

[1]
Dr. Maria Lopez, “Machine Learning for Predicting Patient Readmission Rates: Developing machine learning models to predict patient readmission rates and optimize healthcare resource allocation”, Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 2, pp. 12–22, Sep. 2024, Accessed: Jan. 17, 2025. [Online]. Available: https://biotechjournal.org/index.php/jbai/article/view/76

Abstract

Predicting patient readmission rates is crucial for healthcare providers to optimize resource allocation and improve patient outcomes. Machine learning (ML) models offer a promising approach to forecast readmissions, leveraging patient data to identify at-risk individuals. This paper explores the development and evaluation of ML models for predicting patient readmission rates, focusing on key challenges and strategies for model optimization. We present a comprehensive analysis of various ML algorithms and feature selection techniques, highlighting their effectiveness in predicting readmissions. Additionally, we discuss the implications of our findings for healthcare practitioners and suggest future research directions in this domain.

PDF

References

Saeed, A., Zahoor, A., Husnain, A., & Gondal, R. M. (2024). Enhancing E-commerce furniture shopping with AR and AI-driven 3D modeling. International Journal of Science and Research Archive, 12(2), 040-046.

Shahane, Vishal. "A Comprehensive Decision Framework for Modern IT Infrastructure: Integrating Virtualization, Containerization, and Serverless Computing to Optimize Resource Utilization and Performance." Australian Journal of Machine Learning Research & Applications 3.1 (2023): 53-75.

Biswas, Anjanava, and Wrick Talukdar. "Guardrails for trust, safety, and ethical development and deployment of Large Language Models (LLM)." Journal of Science & Technology 4.6 (2023): 55-82.

N. Pushadapu, “Machine Learning Models for Identifying Patterns in Radiology Imaging: AI-Driven Techniques and Real-World Applications”, Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, pp. 152–203, Apr. 2024

Talukdar, Wrick, and Anjanava Biswas. "Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity." arXiv preprint arXiv:2408.04023 (2024).

Chen, Jan-Jo, Ali Husnain, and Wei-Wei Cheng. "Exploring the Trade-Off Between Performance and Cost in Facial Recognition: Deep Learning Versus Traditional Computer Vision." Proceedings of SAI Intelligent Systems Conference. Cham: Springer Nature Switzerland, 2023.

Alomari, Ghaith, et al. “AI-Driven Integrated Hardware and Software Solution for EEG-Based Detection of Depression and Anxiety.” International Journal for Multidisciplinary Research, vol. 6, no. 3, May 2024, pp. 1–24.

Choi, J. E., Qiao, Y., Kryczek, I., Yu, J., Gurkan, J., Bao, Y., ... & Chinnaiyan, A. M. (2024). PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nature Communications, 15(1), 5487.

Borker, P., Bao, Y., Qiao, Y., Chinnaiyan, A., Choi, J. E., Zhang, Y., ... & Zou, W. (2024). Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Cancer Research, 84(6_Supplement), 7479-7479.

Gondal, Mahnoor Naseer, and Safee Ullah Chaudhary. "Navigating multi-scale cancer systems biology towards model-driven clinical oncology and its applications in personalized therapeutics." Frontiers in Oncology 11 (2021): 712505.

Saeed, Ayesha, et al. "A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 1-9.

Pelluru, Karthik. "Prospects and Challenges of Big Data Analytics in Medical Science." Journal of Innovative Technologies 3.1 (2020): 1-18.

Tatineni, Sumanth, and Sandeep Chinamanagonda. "Machine Learning Operations (MLOps) and DevOps Integration with Artificial Intelligence: Techniques for Automated Model Deployment and Management." Journal of Artificial Intelligence Research 2.1 (2022): 47-81.

Downloads

Download data is not yet available.